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Abstract

We present a new method for constructing a confidence interval for the
mean of a bounded random variable from samples of the random variable.
We conjecture that the confidence interval has guaranteed coverage, i.e.,
that it contains the mean with high probability for all distributions on
a bounded interval, for all samples sizes, and for all confidence levels.
This new method provides confidence intervals that are competitive with
those produced using Student’s t-statistic, but does not rely on normality
assumptions. In particular, its only requirement is that the distribution
be bounded on a known finite interval.

1 Introduction

Consider one of the fundamental problems in statistics: how to use n samples
of a real-valued random variable to obtain a confidence interval on its mean.
Methods for constructing such confidence intervals are used across all branches
of science. In the natural and social sciences, the confidence interval based on
Student’s t-statistic (Student, 1908) is one of the standard tools for quantifying
uncertainty about the results of an empirical study. In theoretical work, concen-
tration inequalities like Hoeffding’s inequality (Hoeffding, 1963) are often used
to analyze properties of algorithms in machine learning, data science, and other
areas. Providing methods for obtaining tighter confidence intervals from fewer
samples is critical to scientific advancement, enabling stronger conclusions to be
drawn from the same experimental data.

In particular, there is a practical need today for confidence intervals that hold
for small sample sizes. Since the confidence interval produced using Student’s
t-statistic, which we refer to hereafter as the Student-t interval, relies on the
(near) normality of the sample mean, it is recommended that sample sizes be
at least 30 for it to be used, unless there is a specific reason to believe that
the population distribution is approximately normal. While other confidence
intervals that hold for small sample sizes exist (such as Anderson’s (1969)),
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they produce intervals that are so wide as to be of little use in practice. This
leaves the practitioner with the following choices:

• use methods, such as bootstrap methods, with no performance guarantees;

• use methods with unrealistic assumptions, such as the Student-t interval;

• use valid but weak methods such as Hoeffding or Anderson’s inequalities
that provide little information about the mean;

• abandon the idea of obtaining useful confidence intervals from the data.

In this paper, we introduce a new confidence interval for bounded distributions
that is much tighter than other confidence intervals that come with guarantees.
We conjecture that it holds for all bounded distributions, all samples sizes,
and all confidence levels. We suggest that for many applications, this is the
first practical confidence interval for sample sizes less than 30. We now offer a
formal statement of the problem we are addressing.

1.1 Problem Statement

Let X1, . . . , Xn be n independent and identically distributed real-valued random
variables. Let eachXi take values in the interval [0, 1] and have expected value µ.
For now we focus on a high-confidence upper bound, i.e., we desire a function mα

such that, for all distributions of Xi, all sample sizes n ≥ 1, and all confidence
levels 1− α ∈ [0, 1]:

Pr (mα(X1, . . . , Xn) ≥ µ) ≥ 1− α. (1)

That is, with probability at least 1−α, mα(X1, . . . , Xn) should be greater than
or equal to the mean. Critically, in this statement the random quantity is the
high-confidence upper bound, not the mean. Any definition of mα that satisfies
(1) for all bounded distributions, samples sizes n ≥ 1, and 1− α ∈ [0, 1], is said
to have guaranteed coverage.

In this paper we present a new method for constructing confidence intervals
on the mean: a new mα. We conjecture that our function mα satisfies (1),
i.e., that it has guaranteed coverage. If our conjecture holds, this is the first
confidence interval with tightness comparable to the Student-t interval, but with
guaranteed coverage in this setting. We prove in Section 7 that it dominates
several other known confidence intervals with guaranteed coverage. That is,
for every possible sample (x1, x2, ..., xn), it produces a confidence interval with
width less than or equal to these previous methods, often with a much smaller
width. This makes our confidence interval suitable for small sample sizes where
other methods are not practical.

After defining mα in the next section, we present the following results:

• a proof of (1) for a class of distributions that includes Bernoulli distribu-
tions, for all samples sizes n, and for all confidence levels 1− α;
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• the sketch of a proof that our intervals are always at least as tight as
those provided by Anderson (1969), which, in turn, are strictly tighter
than those of Hoeffding (1963);

• results of extensive simulations on a wide variety of distributions that are
consistent with (1) for many sample sizes and confidence intervals;

• empirical comparisons (through Monte Carlo simulations) with previous
methods, demonstrating that the confidence intervals produced by mα are
consistently tighter than or as tight as the intervals produced by existing
methods.

2 A New Confidence Interval for the Mean

In this section we present our new confidence interval. We also present our
conjecture that it holds for all distributions bounded on [0, 1], for all sample
sizes, and for all confidence levels.

Let X
def
= (X1, X2, . . . , Xn). Let Z

def
= (Z1, Z2, . . . , Zn) be the order statistics

of X, i.e., Z is a vector containing the sorted values of X such that Z1 ≤
Z2 ≤ · · · ≤ Zn. Let z

def
= (z1, z2, ..., zn) denote a particular sample of Z and x

def
=

(x1, x2, . . . , xn) a sample of X. For notational convenience, we alternate between
viewing mα as a function of z or x. So, when we write mα(z) subsequently, this
corresponds to a definition of mα(x) where z are the order statistics of x.

Let U be the order statistics of a sample of size n from the continuous uni-

form distribution on [0, 1], with u
def
= (u1, u2, . . . , un) being a particular sample

of U. Since u are order statistics, 0 ≤ u1 ≤ u2 ≤ ... ≤ un ≤ 1. We define a
function of two ordered vectors:

m(z,u)
def
= 1−

n∑
i=1

ui(zi+1 − zi),

where zn+1
def
= 1. Let Q(1−α, Y ) be the quantile function of the scalar random

variable Y , i.e.,

Q(1− α, Y )
def
= inf{y ∈ R : FY (y) ≥ 1− α}, (2)

where FY (y) is the cumulative distribution function (CDF) of Y .
Consider the random quantity m(z,U), which depends upon a fixed sample

z (non-random) and also on the random variable U. We define mα(z) to be the
(1− α)-quantile of m(z,U), i.e.,

mα(z)
def
= Q(1− α,m(z,U)). (3)

We conjecture that this definition of mα satisfies (1):
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Conjecture 1. Let X = (X1, . . . , Xn) be n independent and identically
distributed random variables bounded in the interval [0, 1], each with mean
µ. Let Z = (Z1, . . . , Zn) be the order statistics of X. Then for all α ∈
[0, 1]:

Pr (mα(Z) ≥ µ) ≥ 1− α,

where mα is defined in (3).

Several extensions of this conjecture are apparent. First, since each Xi is
bounded above by 1, this conjecture implies that 1 −mα(1 − z) is a (1 − α)-
confidence lower bound on µ. Second, if our main conjecture holds, we further
conjecture that the assumption that the random variables are in [0, 1] can be
extended to (−∞, 1], or [0,∞) for the high-confidence lower bound. Further-
more, the deterministic upper bound of 1 can be loosened to only require an
almost-sure upper bound of 1. Although these extensions may be important for
some applications, hereafter we focus on the basic setting introduced previously.

3 Understanding mα(z)

Our high-confidence bound (for brevity, hereafter we refer to it as simply our
bound) is given by the function mα defined above. In this section we introduce
the following concepts, which provide intuition for mα:

• ordered CDF pairs,

• the conservative completion of a set of ordered CDF pairs,

• the induced mean of a set of ordered CDF pairs, via conservative comple-
tion.

3.1 Ordered CDF pairs

For any order statistic vector z, each element of z can be paired with an element
from a non-decreasing sequence of numbers, u1, u2, ..., un, to form n pairs:

(z1, u1), (z2, u2), ..., (zn, un).

Assuming the u’s are all in the interval [0, 1] (as is the case if u is a sample of
U), these pairs can be viewed as points on a CDF F , i.e., ui = F (zi). For this
reason, we refer to these n pairs as ordered CDF pairs, and write (z,u) to denote
such a set of ordered CDF pairs. We say that a set of ordered CDF pairs is
consistent with a CDF F if ui = F (zi) for all i ∈ {1, 2, . . . , n}. Notice that a set
of ordered CDF pairs is consistent with many (usually infinitely many) different
CDFs—all non-decreasing functions on the interval [0, 1] that pass through these
n points (see Figure 1).
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Figure 1: Given a sample z and a vector u of sorted uniform samples, the
ordered CDF pairs (black points) are compatible with a large family of CDFs.
Two of the CDFs compatible with these points are shown, a smooth orange one,
and a stairstep blue one. The blue one represents the CDF F(z,u)(x), which has
the greatest mean among all such CDFs, since it puts mass “as far right” as
possible in a way that is still compatible with the ordered CDF pairs. We refer
to this CDF as the conservative completion of the ordered CDF pairs (z,u).

3.2 Conservative Completion of Ordered CDF Pairs

Given a set of ordered CDF pairs, one may ask which of the (usually infinitely
many) CDFs that are consistent with the ordered CDF pairs represents the
distribution with the greatest mean, and is this CDF unique? This CDF is
unique, and we refer to it as the conservative completion of the ordered CDF
pairs. That is, the mean of the distribution characterized by the conservative
completion represents an upper bound on the mean of any distribution consis-
tent with the set of ordered CDF pairs.

The conservative completion for a set of ordered CDF pairs, (z,u), is illus-
trated in Figure 1. It is given by the CDF:

F(z,u)(x)
def
=



0, for x < z1

u1, for z1 ≤ x < z2

u2, for z2 ≤ x < z3

..., ...

un, for zn ≤ x < 1

1, for x ≥ 1.
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Area of blue region = mean(F(z,u))  

  Area of pink  
 region = 1-mean(F(z,u)) 

0 

1 

u1 

u2 

u4 
u5 

u3 

0 1 
z1 z2 z4 z5 z3 

x 

F(z,u)(x) 

Figure 2: For CDFs defined on the interval [0, 1], the mean of the distribution
characterized by F(z,u)(x) is given by the area of the region above the CDF
(blue), or one minus the area of the region below the CDF (pink).

3.3 The Induced Mean, m(z,u)

We introduce m(z,u) to represent the mean of the distribution characterized by
F(z,u)(x). This quantity is, for distributions over [0, 1], equivalent to the area
of the region above the CDF, as depicted in Figure 2. The geometry of this
figure suggests two methods for calculating this mean. The first, derived by
decomposing the blue in Figure 2 into a set of horizontal strips, is

m(z,u) =

n+1∑
i=1

zi(ui − ui−1),

where u0
def
= 0, un+1

def
= 1, and zn+1

def
= 1. Another formula is given by dividing

the pink region into vertical strips, and is given by

m(z,u) = 1−
n∑
i=1

ui(zi+1 − zi).

Next, we consider the distribution of such means obtained by allowing u to vary
in a particular fashion.

3.4 A Distribution of Induced Means

Recall that U is a random vector containing n samples from the continuous
uniform distribution on [0, 1], sorted such that 0 ≤ U1 ≤ U2 ≤ ... ≤ Un ≤ 1. We
now consider a distribution of induced means obtained by replacing the fixed
u in m(z,u) with a random vector U to form a new scalar random variable
m(z,U).
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Recall the definition of the quantile function from (2). We define mα(z) to
be the (1− α)-quantile of the random variable m(z,U), i.e.,

mα(z)
def
= Q(1− α,m(z,U)).

Thus, mα(z) considers the set of all u’s that can be used to form an ordered CDF
pair with a particular sample z and chooses the (1−α)-quantile of the resulting
induced means. As we shall see, this turns out to be just “conservative enough”
to provide a valid high-confidence bound for Bernoulli-like distributions, and
appears to be looser for distributions that are not Bernoulli-like.

4 The Order Statistic Simplex and Feasible Set

In this section, we define the order statistic simplex and the notion of feasible
and infeasible sets of samples of order statistics. These definitions will be used
in Section 5 to prove that our bound holds for all Bernoulli distributions and
also for a more general set of Bernoulli-like distributions.

4.1 A Conditional Analysis

Our general method of proof (in the next section) will rely on a conditional
analysis for a specific set of distributions. In particular, we will analyze our
bound specifically for

• a fixed sample size n,

• a subset of the distributions with a specific mean, µ,

• a specific confidence level, 1− α (or equivalently, failure rate α).

If we can show that the bound, (1), holds for each tuple (n, µ, 1 − α), then we
have a complete proof for the set of distributions under consideration.

Before proceeding with this method of proof, we define a few necessary terms.

4.2 The Order Statistic Simplex

Consider the order statistic simplex in n dimensions—the set of all possible order
statistic vectors, z, which forms a polytope of dimension n with n+ 1 vertices,
i.e., a simplex. For distributions on [0, 1], we define the order statistic simplex
as:

Z def
=
{
z = (z1, z2, ..., zn) : 0 ≤ z1 ≤ z2... ≤ zn ≤ 1

}
.

The order statistic simplex for n = 2 is depicted by the blue region in Figure 3.
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Figure 3: The order statistic simplex in n = 2 dimensions. The upper left
region (blue) shows the region of possible (valid) order statistics for a sample
of size n = 2. For other n, this region is defined by a polytope of n dimensions
and n+ 1 vertices, i.e., a simplex. We refer to this as the order statistic simplex
in n dimensions.

4.3 The Infeasible Set of z’s

Let the sample size, n, be fixed. For distributions with a specific mean, µ, and
for a specific confidence level, 1− α, let Zµα ⊆ Z denote the set of z’s for which
mα(z) ≥ µ. We refer to Zµα as the feasible set, and say that z satisfies the
bound if z ∈ Zµα . Let Zµα denote the complement of this set, the set of z’s for
which mα(z) < µ. We refer to Zµα as the infeasible set of z’s, and say that z
does not satisfy the bound if it is in Zµα. Note that, given the mean, µ, of a
distribution, the feasible and infeasible sets have no other dependency on the
unknown distribution of X.

These ideas are illustrated in Figure 4. For sample size n = 2, each plot
shows the feasible (blue) and infeasible (green) regions for given confidence
levels 1− α and means µ. Each row shows results for the same µ and different
confidence levels. Note that in some cases, such as 1−α = 0.6 and µ = 0.3, the
entire order statistic simplex is feasible (there are no green pixels).

5 Bernoulli and Half-Bernoulli Distributions

In this section, we present a proof of our conjecture for Bernoulli distributions
and for a generalization of Bernoullis that we refer to as half-Bernoulli distri-
butions. While Bernoulli distributions have point masses on both 0 and 1, half-

8



Figure 4: Feasible and infeasible regions for n = 2. For various values of the
confidence level 1 − α and the mean µ, we show the feasible regions in blue
(for which the bound is greater than or equal to the mean) and the infeasible
regions in green (for which the bound is less than the mean).

Bernoullis can have point masses at two positions: k and 1, where 0 ≤ k < 1.
Thus, they are a generalization of Bernoullis that allow the lower value to be
any non-negative value less than 1. Let Hk,µ be the half-Bernoulli distribution
where the point masses are at k and 1, and the mean is µ. With k and µ
specified by Hk,µ, the probability pk of sampling k is given by

pk =
1− µ
1− k

.

Bernoullis (and half-Bernoullis) are prime candidates for distributions for
which the bound will fail (violate (1)), since it is not uncommon to have a sample
of all 0’s (or all k’s), despite having a relatively large mean. For example, the
probability of obtaining a sample of [0, 0, 0, 0] from a Bernoulli distribution with
parameter p = 0.5 is 0.54 = 0.0625. Since the probability of getting this sample
is greater than 0.05, the bound must produce a result greater than µ = 0.5 for
this sample at the confidence level 1−α = 0.95. As we demonstrate below, the
bound holds for all Bernoulli and half-Bernoulli distributions.

5.1 Finding Worst Case Half-Bernoullis for (n, µ, 1− α)
Our approach will be to find “worst case” distributions among the set of half-
Bernoulli distributions. By worst case, we mean that the probability of drawing
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a sample z for which the bound fails is as high as possible. We will show that
for the worst case half-Bernoulli distributions (there can be more than one of
these for each tuple (n, µ, 1 − α), the probability of drawing a sample z ∈ Zµα
is no more than α. Since the bound holds for the worst case half-Bernoullis, it
must hold for all half-Bernoullis.

5.1.1 Enumerating possible z’s

Consider a half-Bernoulli distribution with probability masses at k and 1, and
with mean µ. For a given n, there are n+ 1 possible order statistics, z:

[k, k, . . . , k, k]

[k, k, . . . , k, 1]

[k, k, . . . , 1, 1]

...

[k, 1, . . . , 1, 1]

[1, 1, . . . , 1, 1].

Let zj,n be the sample z with j out of n values of k, i.e., for j ∈ {0, 1, . . . , n}:

zj,n
def
= [k, . . . , k︸ ︷︷ ︸

j

, 1, . . . , 1︸ ︷︷ ︸
n−j

].

5.1.2 Monotonicity of mα(z)

Notice that mα is monotonic in the following sense. For two samples y and z:

If ∀i, yi ≤ zi then mα(y) ≤ mα(z). (4)

It follows from (4) that mα(zi,n) ≤ mα(zj,n) whenever i < j.

5.1.3 An expression for Pr(Z ∈ Zµα)

For any half-Bernoulli distribution Hk,µ, sample size n, and confidence level
1− α, let

jmin(Hk,µ, 1− α, n) = min
{
j ∈ {0, 1, . . . , n} : zj,n ∈ Z

µ

α

}
,

where jmin(Hk,µ, 1− α, n) = n+ 1 if zn,n ∈ Zµα .

For example, suppose n = 5 and [k, k, k, 1, 1] ∈ Zµα but [k, k, 1, 1, 1] ∈ Zµα .
Then jmin = 3, where here and in the following the arguments of jmin are
implicit. By the monotonicity of the bound (see (4)), all of the samples with
count(k) ≥ jmin will be in Zµα.
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For a given half-Bernoulli distribution we can now write an expression for
the probability that Z will not satisfy the bound:

Pr
Hk,µ

(
Z ∈ Zµα

)
=

n∑
i=jmin

Pr
Hk,µ

(Z = zi,n)

=

n∑
i=jmin

Binomial(i;n, pk)

=βcdf(pk; jmin, n− jmin + 1), (5)

where βcdf(x; a, b) is the CDF of a beta distribution with parameters a and b.
The above derivation uses the property that each zi,n can be viewed as a sample
from a binomial distribution, and in the last step we use a well-known identity
that relates the sum of binomials to the CDF of a beta distribution.

5.1.4 Simplification of m(zj,n) due to the simple structure of zj,n

Before continuing with deriving the pk that maximizes the failure rate of the
bound, we show how m(z,U) simplifies for samples from half-Bernoulli distri-
butions.

Recall that our bound is a quantile of the function m(z,U) with respect to
the uniform random variable U. For samples of the form zj,n, this function
reduces to a particularly simple form:

m(zj,n,U) = 1−
n∑
i=1

Ui((zj,n)i+1 − (zj,n)i)

= 1− [0, ..., 0, 1− k, 0, ...0] ·U
= 1− (1− k)Uj .

That is, with the exception of the jth term, all of the successive differences of
zj,n are 0,1 leaving us with a simple function of the jth order statistic, Uj . Later
it will be useful to note that the jth order statistic when taking n samples from a
uniform distribution is beta distributed with parameters j and n−j+1 (Casella
and Berger, 2002, Example 5.4.5).

5.1.5 Choosing pk to maximize the failure rate

For a fixed (n, µ, 1−α), consider the set of distributions, Hk,µ, with jmin = j, for

some value j. We are interested in the Hk,µ that maximizes Pr(Z ∈ Zµα). Since
we are only considering half-Bernoulli distributions with a particular mean, µ,
the entire distribution is specified if pk is specified, and so we solve for the pk

1We can ignore the case where j = n, since the bound is trivial for zn,n = (1, 1, ..., 1).
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that maximizes Pr(Z ∈ Zµα):

arg max
pk:jmin=j

Pr
Hk,µ

(Z ∈ Zµα)
(a)
= arg max
pk:jmin=j

βcdf(pk; j, n− j + 1)

(b)
= arg max
pk:jmin=j

pk.

Step (a) follows from (5). Step (b) follows since all beta CDFs are monotonic
in their first argument. In other words, within the set of Hk,µ that have the

same µ and jmin, the failure rate of the bound (the probability that Z ∈ Zµα) is
monotonic in pk.

Although the failure rate is monotonic in pk, this does not mean that the
worst-case is when pk = 1, since this monotonicity result is restricted to the set
of half-Bernoulli distributions with jmin = j. We therefore now solve for the
maximum pk such that jmin = j in order to obtain the half-Bernoulli distribution
with mean µ that maximizes the failure rate:

max
{
pk ∈ [0, 1] : jmin = j

}
= max

{
pk ∈ [0, 1] : {z1,n, z2,n, ..., zj−1,n} ⊆ Zµα ,

{zj,n, zj+1,n, ..., zn,n} ⊆ Z
µ

α

}
(a)
= max

{
pk ∈ [0, 1] : zj,n ∈ Z

µ

α

}
= max

{
pk ∈ [0, 1] : Pr

U

(
m(zj,n, U) < µ

)
≥ 1− α

}
(b)
= max

{
pk ∈ [0, 1] : Pr

U

(
1− (1− k)Uj < µ

)
≥ 1− α

}
= max

{
pk ∈ [0, 1] : Pr

U

(
Uj >

1− µ
1− k

)
≥ 1− α

}
= max

{
pk ∈ [0, 1] : Pr

U
(Uj > pk) ≥ 1− α

}
= max

{
pk ∈ [0, 1] : 1− Pr

U
(Uj ≤ pk) ≥ 1− α

}
(c)
= max {pk ∈ [0, 1] : 1− βcdf (pk; j, n− j + 1) ≥ 1− α}
= max {pk ∈ [0, 1] : βcdf (pk; j, n− j + 1) ≤ α}
= max

{
pk ∈ [0, 1] : β−1

cdf(α; j, n− j + 1) ≥ pk
}

= β−1
cdf (α; j, n− j + 1) .

Step (a) follows from the monotonicity of the bound and Section 5.1.2. Step (b)
uses the result of (8). Step (c) uses the the fact that the jth order statistic of a
uniform sample of size n is beta distributed with parameters j and n− j + 1.
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5.1.6 Bringing the pieces together

We have established that, for a given n, of all half-Bernoulli distributions with
mean µ and jmin = j, the one that maximizes the failure rate of the bound has
pk = β−1

cdf (α; j, n− j + 1). Plugging this into (5), we have that

max
Hk,µ:jmin=j

Pr
Hk,µ

(Z ∈ Zµα) =βcdf(β
−1
cdf(α; j, n− j + 1); j, n− j + 1)

=α.

Thus, we have seen that by maximizing the probability that Z causesmα(Z) >
µ, i.e., maximizing Pr(Z ∈ Zµα), we can produce a probability of violation of at
most α. Thus, the bound holds with probability at least 1 − α. Since this is
true for all half-Bernoulli distributions for all values of jmin and arbitrary tuples
(n, µ, 1− α), it is true for all half-Bernoullis, all sample sizes and all confidence
levels.

6 Computing mα

In this section, we discuss two methods for computing our bound, mα(z), for a
particular sample z. The first is based upon a geometric analysis of the bound
and the second uses a Monte Carlo sampling technique.

6.1 Geometric Computation of the Bound

Recall that the random variable U represents the order statistics of a uniform
sample, and hence lies in the order statistic simplex defined in Section 4.2.
Figure 5 shows the order statistic simplex for n = 2. Note that the order
statistic simplex of dimension n has volume 1

n! .

Let s
def
= [z2−z1, z3−z2, ..., zn+1−zn] be the spacings of the sample. Consider

an example in which z = [0.3, 0.8]. Then s = [0.5, 0.2], as shown in the figure.
Starting from the definition of our bound mα(z) and expanding the definition

of the quantile function, we have

mα(z) = inf {µ̂ ∈ R : Pr(m(z,U) ≤ µ̂) ≥ 1− α}
= inf {µ̂ ∈ R : n! Volume({u : m(z,u) ≤ µ̂}) ≥ 1− α}
= inf {µ̂ ∈ R : n! Volume({u : 1− u · s ≤ µ̂}) ≥ 1− α}
= inf {µ̂ ∈ R : n! Volume({u : u · s ≥ 1− µ̂}) ≥ 1− α} .

This final expression has a clear geometric interpretation. The set of points u
such that u · s is greater than some value is the upper right region of the order
statistic simplex, depicted by the pink region in Figure 5. The bound is defined
to be the least value of µ̂ such that the volume of the pink region is a fraction
1− α of the simplex volume.

This value of µ̂ can be found by evaluating the volume of the section of the
order statistic simplex above the hyperplane l, a hyperplane orthogonal to the

13
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Figure 5: The figure shows several quantities related to the geometric computa-
tion of our bound. The upper left triangle represents the order statistic simplex.
The point s represents the spacings of the sample z. The pink region, which
we define later to be ULMT, is a section of the order statistic simplex cut by
the hyperplane l, which represents the set of vectors u for which u · s is greater
than or equal to some value. The goal is to find the maximum such value, and
thereby the minimum µ̂ such that the volume of the pink region is 100(1−α)%
of the volume of the order statistic simplex.

spacings vector s. Thus, we seek the smallest value of µ̂ such that the volume
of this section is 100(1−α)% of the volume of the order statistic simplex. This
value of µ̂ is our bound.

Closed-form expressions for sections of simplexes cut by hyperplanes have
been published by several authors, including Lasserre (2015). These expressions
lead to efficient calculations of the bound in most cases. However, these formulas
have singularities that cause problems for certain samples z, such as samples
with repeated values. Thus, we explore a more reliable Monte Carlo approach
for computing our bound below.

6.2 Monte Carlo Estimate of the Bound

Since the bound is defined in terms of a quantile of a function that depends upon
a uniform random variable, it is simple to develop a Monte Carlo estimate. This
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is provided in Algorithm 1.

Algorithm 1: Monte Carlo Estimation of mα

This pseudocode uses zero-based indexing of arrays.

Input : A sample x, confidence parameter, α, and Monte Carlo
sampling parameter l.

Output: An estimate of mα(x).
1 n← length(x);
2 z← sort(x, ascending);
3 Create array ms to hold l floating point numbers, and initialize it to zero;
4 Create arrays u and s, each to hold n floating point numbers;
5 for i← 1 to n− 1 do
6 s[i] = z[i+ 1]− z[i];
7 end
8 s[n]← 1− z[n];
9 for i← 1 to l do

10 for j ← 1 to n do
11 u[j] ∼ Uniform(0, 1);
12 end
13 sort(u, ascending);
14 ms[i]← 1− s · u;

15 end
16 sort(ms, ascending);
17 return ms[d(1− α)(n− 1)e];

Algorithm 1 can be implemented more efficiently if mα will be estimated
multiple times for the same n, since samples of U can be computed and sorted
a single time. Also, notice that the number of Monte Carlo samples, l, does
not scale poorly for distributions with rare values, since we are estimating the
(1−α)-quantile of m(z,U), which is robust to outliers (e.g., α = 0.5 makes this
the median, which is well known to be robust to outliers).

In practice, we find that l = 10,000 tends to provide a reasonable approx-
imation of mα(x) for α = 0.05. Note that (1) may not hold when using this
Monte Carlo estimate of mα due to error in the estimate. In practice this can
be remedied by increasing l, or by incorporating high-probability bounds on
the error in the Monte Carlo estimate into the bound. Also, note that as α
decreases, l should be increased.

7 Related Work

In this section, we review other methods for computing high-confidence up-
per bounds on the mean of a random variable from samples (several of which
we compare to in the subsequent numerical analysis section). Although some
of these methods extend to more general settings (e.g., Hoeffding’s inequality
does not require identically distributed samples, and Anderson’s inequality does
not require a lower-bound on the random variable), here we consider only the
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standard setting that we have discussed in this paper, wherein the samples are
i.i.d. and the random variable always takes values in the interval [0, 1]. We
divide this section into two parts: prior methods that provide guaranteed cov-
erage, and prior methods that do not provide guaranteed coverage. We present
these prior methods as functions, mHoeffding

α , mMaurer&Pontil
α , etc., each of which

provides an alternative to mα.

7.1 Prior Methods with Guaranteed Coverage

The methods presented in this subsection have guaranteed coverage in the set-
ting that we have described—they satisfy (1) if used in place of mα.

Using Hoeffding’s inequality (Hoeffding, 1963) to construct a high-confidence
upper-bound on µ is perhaps the best known, and simplest, prior method with
guaranteed coverage:

mHoeffding
α (x)

def
= x̄ +

√
ln(1/α)

2n
,

where x̄ is the sample mean, i.e., x̄
def
= 1

n

∑n
i=1 xi. In cases where the variance of

the random variable is significantly less than one, the upper bounds provided by
Maurer and Pontil’s empirical Bernstein bound (Maurer and Pontil, 2009) can
be tighter than those produced by Hoeffding’s inequality. This is achieved by

leveraging not just the sample mean, x̄, but also the sample variance, V̂ar(x)
def
=

1
n−1

∑n
i=1(xi − x̄)2:

mMaurer&Pontil
α (x)

def
= x̄ +

√
2V̂ar(x) ln(2/α)

n
+

7 ln(2/α)

3(n− 1)
.

Going one step further, Anderson’s inequality provides high-confidence upper
bounds on the mean by using the entire sample CDF (rather than only the
sample mean and variance):

mAnderson
α (z)

def
= m(z,uDKW),

where for i ∈ {1, 2, . . . , n},

uDKW
i

def
= max

{
0, i/n−

√
ln(1/α)/2n

}
(22)

is a vector that Anderson derived from the Dvoretsky-Kiefer-Wolfowitz (DKW)
inequality (Dvoretzky et al., 1956). Note that the form we present for An-
derson’s inequality uses the tight constant for the DKW inequality found by
Massart (1990), which relies on the assumption that α ≤ 0.5. This restriction is
not restrictive because high-confidence bounds are typically applied with small
values of α, e.g., α = 0.05.

Following these three methods, several alternatives have been proposed,
including other approaches that rely only on the sample mean (Chen, 2008),
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methods that extend Maurer and Pontil’s empirical Bernstein bound to provide
tighter bounds for random variables with long tails (Bubeck et al., 2012; Thomas
et al., 2015a), and methods that provide alternatives to Anderson’s inequality
that use alternative methods of defining inclusion envelopes for a distribution’s
CDF (Learned-Miller and DeStefano, 2008; Diouf and Dufour, 2005).

7.2 Prior Methods without Guaranteed Coverage

All of the methods presented in this subsection do not have guaranteed coverage
in the setting that we have described, but are often used to compute high-
confidence upper bounds on the mean.

Perhaps the most common method for constructing high-confidence upper
bounds is based on Student’s t-statistic (Student, 1908):

mStudent
α (x)

def
= x̄ +

√
V̂ar(x)

n
t1−α,n−1,

where t1−α,ν denotes the 100(1 − α) percentile of the Student’s t distribution
with ν degrees of freedom. We refer to this confidence interval as the Student-t
interval. If X̄ is normally distributed, then mStudent

α does provide guaranteed
coverage. The central limit theorem implies that X̄ tends towards a normal
distribution as n increases, and so this method is often applied in scientific
research if n ≥ 30, even though this does not provide coverage guarantees.

Bootstrap methods tend to provide the tightest confidence intervals for the
mean. However, this comes at a large cost: they do not have guaranteed cover-
age, even with normality assumptions. Despite concerns about their reliability,
bootstrap methods remain in common use due to their tight confidence intervals
and tendency to produce error rates roughly around α for many common dis-
tributions (Hanna et al., 2017; Thomas et al., 2015b). Since bootstrap methods
are not easily expressed as closed-form alternatives to mα, we refer the reader
to the work of Efron and Tibshirani (1993) for details on these approaches. The
two that we focus on in our subsequent experiments are the most common, the
percentile bootstrap, and one of the most sophisticated, the bias corrected and
accelerated (BCa) bootstrap.

One limitation of BCa, the more sophisticated bootstrap method, is that
it is not defined in some cases (e.g., if all of the samples take the same value)
and can encounter numerical issues in other cases. In our implementations,
whenever numerical issues are detected, the method automatically reverts to
the percentile bootstrap.

8 Theoretical Analysis

In this section, we provide an analytic comparison of our bound to two prior
methods that provide guaranteed coverage: Hoeffding’s inequality and Ander-
son’s inequality. We will show that, for any sample z, our high-confidence upper
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bound is less than that resulting from Hoeffding’s inequality, and never greater
than that of Anderson’s inequality. We break this result into two components.
First we show that for all z, mα(z) ≤ mAnderson

α (z). Second, we show that for
all z, mAnderson

α (z) ≤ mHoeffding
α (z), which implies that mα(z) ≤ mHoeffding

α (z),
where these inequalities are strict if α ≤ 0.5.

8.1 Theoretical Comparison to Anderson’s Inequality

In this section we compare mα to mAnderson
α .

Theorem 1. For all possible values z of Z and all α ∈ [0, 0.5],

mα(z) ≤ mAnderson
α (z).

Proof. We present a sketch of the proof. Consider the diagram in Figure 6.
This figure depicts, for n = 2, the space of possible vectors u, which are sorted
uniform samples. The point (u1, u2) represents uDKW, defined in (22). UDKW

denotes the set of vectors that are element-wise greater than uDKW. It follows
from the DKW inequality, with the tight constants found by Massart (1990),
that the probability U is in UDKW is at least 1−α. The region ULMT is any set
of u’s that result in the lowest induced means, m(z,u), while ensuring that the
probability that U is in ULMT is precisely 1−α. Note that any point that is not
contained within the pink region must represent a vector u that results in an
induced mean, m(z,u), which is greater than the induced mean of any point in
the pink region. Our bound is effectively the maximum over induced means of
points in the pink region and Anderson’s bound is the maximum over points in
the blue region. Since the probability that U is in UDKW cannot be less than the
probability that U is in ULMT, and ULMT contains the u vectors that minimize
the induced mean, our bound cannot be larger than Anderson’s.

(u1,u2) 

 

0 1 0.5 
0 

0.5 

1 

UDKW 
ULMT  

Figure 6: Diagram comparing our bound and Anderson’s.
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8.2 Analytic Comparison to Hoeffding’s Inequality

In this section we prove the following theorem:

Theorem 2. For all possible values z of Z and all α ∈ [0, 1],

mAnderson
α (z) ≤ mHoeffding

α (z),

where the inequality is strict if α ≤ 0.5.

Proof. We begin with mAnderson
α (z) and present a sequence of inequalities that

conclude with mHoeffding
α (z), where one inequality is strict if α ≤ 0.5:

mAnderson
α (z) =m

(
z,uDKW

)
=1−

n∑
i=1

(zi+1 − zi)uDKW
i

=1−
n∑
i=1

(zi+1 − zi) max

{
0,
i

n
−
√

ln(1/α)

2n

}

≤1−
n∑
i=1

(zi+1 − zi)

(
i

n
−
√

ln(1/α)

2n

)
.

If α ≤ 0.5, then this final inequality is strict because, when i = 1, we have that
for any n, 0 > i/n−

√
ln(1/α)/2n, and so

max

{
0,
i

n
−
√

ln(1/α)

2n

}
>

i

n
−
√

ln(1/α)

2n
.

Continuing, we have:

mAnderson
α (z) ≤1−

n∑
i=1

(zi+1 − zi)
i

n
+

n∑
i=1

(zi+1 − zi)
√

ln(1/α)

2n

=1 +
1

n

(
n∑
i=1

izi −
n∑
i=1

izi+1

)
+ (zn+1 − z1)

√
ln(1/α)

2n

=1 +
1

n

(
n∑
i=1

izi −

(
n∑
i=2

(i− 1)zi

)
− n

)
+ (1− z1)

√
ln(1/α)

2n

=
1

n

n∑
i=1

zi + (1− z1)

√
ln(1/α)

2n
(23)

≤ 1

n

n∑
i=1

zi +

√
ln(1/α)

2n

=mHoeffding
α (z).

Notice that (23) provides an expression similar to Hoeffding’s inequality, but
where the lower bound on the random variable (in our case, zero) is replaced by
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the smallest observed sample, z1. This presents a tighter variant of Hoeffding’s
inequality that holds when α ≤ 0.5 and the random variables are i.i.d. (the
general form of Hoeffding’s inequality holds for random variables that are not
necessarily identically distributed).

It then follows from Theorem 2 that our bound is always at least as tight as
Hoeffding’s inequality, and is strictly tighter if α ≤ 0.5:

Corollary 1. For all possible values z of Z and all α ∈ [0, 1],

mα(z) ≤ mHoeffding
α (z),

where the inequality is strict if α ≤ 0.5.

Proof. This follows immediately from Theorems 1 and 2.

9 Numerical Analysis

In this section we present results from a numerical analysis of our bound. These
empirical results aim to answer the following research questions:

RQ1 For a variety of distributions, confidence levels, and number of samples,
are results consistent with (1)?

RQ2 For a variety of distributions that resemble common use-cases, how do the
confidence intervals produced by our bound compare to those of previous
methods that have guaranteed coverage (i.e., those that satisfy (1))?

RQ3 This question is the same as RQ2, but for methods that do not have
guaranteed coverage.

RQ4 Can our bound provide confidence intervals that are practical for scientific
experiments with fewer than 30 samples?

9.1 Numerical Studies on Guaranteed Coverage

In this subsection we study RQ1 with experiments that are consistent with the
conjecture that mα, as we have defined it, has guaranteed coverage (satisfies
(1)). Although they show that (1) appears to hold for a variety of settings, this
does not imply that settings do not exist under which (1) does not hold.

To study RQ1, we selected a variety of different distributions (uniform, beta,
and Bernoulli, each with various parameters), confidence levels 1−α, and num-
ber of samples, n. For each such tuple, (distribution, 1 − α, n), we collected
10,000 samples of Z, computed mα(Z), and checked whether mα(Z) ≥ µ. From
these 10,000 tests, we estimated the coverage—the probability that the bound
holds. That is, we estimated Pr(mα(Z) ≥ µ) by dividing the number of samples
of Z such that mα(Z) ≥ µ by 10,000.

Although or goal here is to study RQ1, to facilitate the interpretation of
the presented results, we provide results using two prior methods that exhibit
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the different types of behavior that our bound might produce. This comparison
also provides some insight into RQ2 (via the comparison to Heoffding’s inequal-
ity) and RQ3 (via comparison to the Student-t interval). However, note that
subsequent experiments further study these two research questions.

First consider Figure 7, which presents results using Hoeffding’s inequality.
The top left plot shows the coverage for a variety of beta distributions, but
with n fixed. To interpret this plot, consider the curve β(1, 5) n = 10 at the
0.7 position on the horizontal axis. The position 0.7 on the horizontal axis
indicates that we requested an upper bound that holds with probability at least
0.7. Since, at horizontal position 0.7, the curve β(1, 5) n = 10 (red curve) lies
above 0.7 (blue curve), the upper bound produced by Hoeffding’s inequality
held with probability greater than 0.7. Hence, a curve remaining above the
blue line indicates that the desired confidence level was achieved. However,
notice that the curve is far above the blue line—this indicates that Hoeffding’s
inequality was overly conservative. It provided a high-confidence upper bound
that was greater than or equal to the mean far more often than requested. This
means that for this distribution the confidence interval provided by Hoeffding’s
inequality is not tight, and could be improved.

The three other plots in Figure 7 are similar, but use different parame-
ters. The top row presents results for beta distributions, while the bottom row
presents results for Bernoulli distributions. The left column presents results as
the parameters of the distributions are varied, while the right column presents
results as the number of samples is varied. Overall Figure 7 shows the behav-
ior that we would expect of a bound that has guaranteed coverage, but which
provides loose high-confidence upper bounds.

Figure 7: Estimated probability that the high-confidence upper bound produced
using Hoeffding’s inequality is greater than or equal to the true mean.
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Now consider Figure 8, which is identical to Figure 7, except that it uses the
Student-t interval instead of Hoeffding’s inequality. This plots shows very dif-
ferent behavior: the curves tend to be much lower, indicating tighter confidence
intervals around the sample mean. However, the curves often cross the blue
line, indicating that in these settings the Student-t interval does not provide
guaranteed coverage—if you ask for an 0.8-confidence upper bound, you may
only get a 0.6-confidence upper bound. Hence Figure 8 shows the behavior that
we would expect of a bound that does not have guaranteed coverage, but which
provides tight “high-confidence” upper bounds.

Figure 8: Estimated probability that the high-confidence upper bound produced
using the Student-t interval is greater than or equal to the true mean.

The desired behavior of a high-confidence upper bound would blend the
desirable properties of Hoeffding’s inequality and the Student-t interval. In
these plots, this would result in curves that always remain above the blue curve
(guaranteed coverage), but are otherwise as low as possible (tight). Figure
9 presents the results of this same experiment, conducted using our bound. It
achieves this desired behavior—it always remains above the blue line (consistent
with guaranteed coverage), but tends to be significantly lower than Hoeffding’s
inequality.

9.2 Numerical Comparison to Previous Methods

In this subsection we focus on RQ2 and RQ3 with experiments that compare
the tightness of our bound to that of previous methods (both with and without
guaranteed coverage). A variety of different statistics can be used to capture how
tight the high-confidence upper bounds produced by a method are, including
the mean upper bound, i.e., E[mα(Z)], and the median upper bound. Here we
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Figure 9: Estimated probability that the high-confidence upper bound produced
using our bound is greater than or equal to the true mean.

report the mean upper bound: we gather 1,000 samples of Z from a distribution
and compute the upper bounds produced by our bound and several previous
methods and report the sample mean of the upper bounds for each method.
For simplicity, here we vary the distribution and n but fix α = 0.05 to obtain
95%-confidence upper bounds.

First compare the blue curve (our bound) to the black curves (previous
methods with guaranteed coverage), noting that the horizontal axis uses a log-
arithmic scale. In every case, the blue curve remains strictly below the black
curves, indicating that in every setting our bound produces lower values on aver-
age. Notice that frequently our bound obtains mean upper bounds that previous
methods require an order of magnitude more samples to achieve, indicating that
our bound is a drastic improvement in tightness and/or data efficiency.

Next, compare the blue curve (our bound) to the red curves (previous meth-
ods that do not have guaranteed coverage). The two bootstrap methods do not
provide guaranteed coverage, even with normality assumptions. So, although
they produce tight confidence intervals (as is evident in these plots), the high-
confidence bounds that they produce cannot be relied upon.

Next consider the Student-t interval: for the uniform distribution, it pro-
duces high-confidence upper bounds that are similar to those produced by our
bound. When the Student-t interval is computed from normally distributed
data, it produces a tighter high-confidence upper-bound than our bound. How-
ever, when the sampling distribution includes right-skew (e.g., β(1, 10)), the
Student-t interval tends to be overly optimistic—it does not have guaranteed
coverage (as is evident in Figure 8 with β(1, 5)). Hence, although the upper
bound of the Student-t interval tends to be lower than those produced by our
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Figure 10: These plots depict the mean upper bounds (over 1,000 tri-
als) for various distributions (the titles on the plots describe the distribu-
tion) and using various methods. All figures share the following legend:
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method for β(1, 10), it does not have guaranteed coverage. On the other hand,
when the sampling distribution includes left-skew (e.g., β(10, 1), the Student-t
interval is overly-conservative (like Hoeffding’s inequality). Hence, in Figure 10,
the β(10, 1) plot indicates that our bound is tighter than the Student-t interval.
This is further evidence that our bound is combining the desirable properties
of Hoeffding’s inequality and the Student-t interval: it roughly preserves the
tightness of the Student-t interval, except in the cases where the Student-t in-
terval is too tight to provide guaranteed coverage (in which case our bound is
sufficiently looser to provide guaranteed coverage).

9.3 Numerical Support for Practical use With n < 30

Of the many potential uses of our bound, one stands out: it provides a valid
method for constructing confidence intervals for scientific studies with fewer
than 30 samples. Even though the Student-t interval does not have guaranteed
coverage when the sampling distribution is not normal, the central limit theorem
tells us that the sample mean tends towards a normal distribution as n increases.
Hence, the Student-t interval becomes reasonable when n is large.2 However,
without knowing the sampling distribution, it is not clear how large n must be
for the Student-t interval to be reasonable. A common rule of thumb used in
current scientific research is that n must be at least 30.

This raises the question: what should one do when fewer than 30 samples
are available? Our bound provides an answer (assuming our conjecture is true),
as it provides confidence intervals of comparable tightness, but with guaranteed
support for any n and without any normality assumptions. The only require-
ment is the ability to identify limits on the support of the distribution. To
answer RQ3, we present an experiment that shows how our bound can be used
to obtain confidence intervals based on fewer than 30 empirical measurements.

Specifically, we used data from the United States Census from the year 2000
to obtain an estimate of the distribution of people’s ages, considering only people
zero to 84 years old. We then consider the problem of obtaining a tight high-
confidence upper bound on the mean age of people ages zero to 84 based on n <
30 samples. The results of this experiment are presented in Figure 11, which is a
similar form to Figure 10 (but without the logarithmic horizontal axis). The key
observations from this plot are: 1) previous methods with guaranteed coverage
are too loose to provide useful high-confidence bounds with so few samples, 2)
the Student-t interval is sufficiently tight, but it cannot be applied responsibly
with such a small n, and 3) our bound produces high-confidence bounds that are
comparable to the Student-t interval (while maintaining guaranteed coverage,
if our conjecture holds).

2Notice that even with arbitrarily large n, the Student-t interval may not have guaranteed
coverage, so here saying that the Student-t interval is “reasonable” does not mean that it has
guaranteed coverage.
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Figure 11: The mean upper bounds (over 1,000 trials) produced by various
methods when n is varied and the sampling distribution is an approximation
of the distribution of ages (bounded in [0, 84]) in the United States in the year
2000.
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